Extensible behavior of titin in the miniswine left ventricle.
نویسندگان
چکیده
BACKGROUND The sarcomeric protein titin is a molecular spring responsible for passive tension and restoring forces of cardiomyocytes. Extension of titin as a function of sarcomere length (SL) has been studied in rodents, which predominantly express the smaller, stiffer N2B titin isoform. Large mammals coexpress roughly equal proportions of N2B and N2BA titin, the larger, more compliant isoform. We hypothesized that extension of titin in relation to SL differs in large mammals and that this difference is functionally important. METHODS AND RESULTS We characterized the filling pressure-SL relation in diastolic-arrested miniswine left ventricles. SL was 2.15 to 2.25 mum at a filling pressure of approximately 0 mm Hg and reached a maximum of approximately 2.50 mum with overfilling. In the normal filling pressure range, SL ranged from approximately 2.32 to approximately 2.40 mum. We assessed titin extension as a function of SL using immunoelectron microscopy, which allowed delineation of the behavior of specific spring segments. The major isoform difference was that the N2B-Us segment extended approximately 4-fold more as a function of SL in N2B compared with N2BA titin. Using this segment, we estimated sarcomeric force development with a worm-like chain model and found that N2B develops markedly greater force than N2BA titin. The resulting force with coexpression of N2B and N2BA titin is intermediate. CONCLUSIONS In light of murine studies showing that operating SLs are shorter than in miniswine, our results indicate that coexpression of the 2 titin isoforms in large mammals allows longer SLs without the development of excessive diastolic tension.
منابع مشابه
Heart Failure Extensible Behavior of Titin in the Miniswine Left Ventricle
Background—The sarcomeric protein titin is a molecular spring responsible for passive tension and restoring forces of cardiomyocytes. Extension of titin as a function of sarcomere length (SL) has been studied in rodents, which predominantly express the smaller, stiffer N2B titin isoform. Large mammals coexpress roughly equal proportions of N2B and N2BA titin, the larger, more compliant isoform....
متن کاملS-Glutathionylation of Cryptic Cysteines Enhances Titin Elasticity by Blocking Protein Folding
The giant elastic protein titin is a determinant factor in how much blood fills the left ventricle during diastole and thus in the etiology of heart disease. Titin has been identified as a target of S-glutathionylation, an end product of the nitric-oxide-signaling cascade that increases cardiac muscle elasticity. However, it is unknown how S-glutathionylation may regulate the elasticity of titi...
متن کاملDifferential expression of cardiac titin isoforms and modulation of cellular stiffness.
Extension of the I-band segment of titin gives rise to part of the diastolic force of cardiac muscle. Previous studies of human cardiac titin transcripts suggested a series of differential splicing events in the I-band segment of titin leading to the so-called N2A and N2B isoform transcripts. Here we investigated titin expression at the protein level in a wide range of mammalian species. Result...
متن کاملTitin-Isoform Dependence of Titin-Actin Interaction and Its Regulation by S100A1/Ca2+ in Skinned Myocardium
Titin, also known as connectin, is a large filamentous protein that greatly contributes to passive myocardial stiffness. In vitro evidence suggests that one of titin's spring elements, the PEVK, interacts with actin and that this adds a viscous component to passive stiffness. Differential splicing of titin gives rise to the stiff N2B and more compliant N2BA isoforms. Here we studied the titin-i...
متن کاملAlterations in the determinants of diastolic suction during pacing tachycardia.
In cardiomyocytes, generation of restoring forces (RFs) responsible for elastic recoil involves deformation of the sarcomeric protein titin in conjunction with shortening below slack length. At the left ventricular (LV) level, recoil and filling by suction require contraction to an end-systolic volume (ESV) below equilibrium volume (Veq) as well as large-scale deformations, for example, torsion...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Circulation
دوره 121 6 شماره
صفحات -
تاریخ انتشار 2010